Stability of peakons of the shallow water modeling with cubic nonlinearity——刘跃 教授


报告题目 Stability of peakons of the shallow water modeling with cubic nonlinearity

主讲专家:刘跃 教授/博导  美国德克萨斯大学阿灵顿分校

报告时间20191227日(周五) 上午 900-1030




报告摘要In this talk, I will start by demonstrating the underlying complexity of the physical system, and then I will discuss possible simplifications in the shallow water regime along with the relevant physical phenomena. In particular, I will derive some simplified nonlocal shallow-water models with cubic nonlinearity, such as integrable Novikov and Modified Camassa-Holm-type equations. It is shown these approximating model equations possess a single peaked soliton and multi-peakon solutions. Finally, I will prove the single peaked soliton is orbitally stable in the energy space.


专家介绍:刘跃,美国德克萨斯大学阿灵顿分校数学系教授。研究专长:非线性波解的适定性、稳定性、长时间性态以及数值计算等。刘跃,美国德克萨斯大学阿灵顿分校数学系教授,1994年博士毕业于美国布朗大学数学系,师从国际著名数学家Walter Strauss教授,其研究兴趣在非线性波解的适定性、稳定性、长时间性态以及数值计算等,是国际上偏微分方程研究尤其是浅水波领域的一流专家,目前已在CPAM, CMP, ARMA, Adv. Math, J. Reine Angew. Math., JMPA, Math. Ann., Math. Z., JFA, CPDE, TAMS, NonlinearityJDE等国际著名刊物上发表论文90余篇,是国际上非线性发展方程理论研究领域的权威专家学者。